Constructor
new OMGSearchCV(params)
Creates an instance of OMGSearchCV.
Parameters:
Name | Type | Description | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
params |
Object | Parameters of the hyperparameter
optimization algorithm.
Properties
|
- Source:
Methods
(async) finish_search()
Clear the temporarily stored variables
for the grid search.
- Source:
(async) fit_final(X, y)
Fits the model with set best parameters to the data.
Parameters:
Name | Type | Description |
---|---|---|
X |
Array | input samples |
y |
Array | output samples |
- Source:
get_dim_vector()
Gets the vector of dimensions that represent
a search space flattened to vector.
- Source:
(async) init()
Initialize the search algorithm.
- Source:
(async) step() → {Object}
Run a single step of search algorithm.
- Source:
Returns:
object that indicate result of a step.
Parameters of the object are as follows:
- {Boolean} improved whether there was an improvement in
score.
- Type
- Object
update_ranges(values)
Updates the ranges of hyperparameters to search over.
This is useful in case first the models with small
complexity are intended to be tried. Then in few initial
iterations, smaller parameters that control complexity
should be given.
Note: only the ranges should be updated for dimensions.
Adding new dimensions will likely lead to unexpected behavior.
Parameters:
Name | Type | Description |
---|---|---|
values |
Object | Dictionary with keys being names of the parameters, and values being dimensions of the optimization-js type. |
- Source: